Emmy Noether – “The most important woman in the history of mathematics”

This post is an edited version of a post which originally appeared on the wonderful Saints, Sisters and Sluts blog (which you should definitely check out!)

“Fraulein Noether was the most significant creative mathematical genius thus far produced since the higher education of women began.”  ~ Albert Einstein

Emmy Noether made ground-breaking contributions to theoretical physics and abstract algebra. She developed several formulations to support Einstein’s General Theory of Relativity, in fact he wrote to David Hilbert, “You know that Frl. Noether is continually advising me in my projects and that it is really through her that I have become competent in the subject.”

The principle behind Noether’s Theorem is foundational to quantum physics, proving that the laws of physics are independent of time and space. And yes you can even blame her for “New Math,” her approach, just very, very, watered down. In spite of all of this, she worked almost her entire life without pay because she was a woman.

The facts of Emmy’s childhood are pretty normal for the time. She was born Amalie Emmy Noether on March 23, 1882, in Erlangen, Bavaria, the oldest of four children in a well-to-do Jewish family. Her mother, Ida Amalie Kaufmann, came from a wealthy family and her father was a well-respected Mathematics professor at the university in Erlangen. Emmy was the only girl and while her three brothers followed the traditional educational track for boys, she was schooled in music, religious instruction, language, child care, household management, etc. Girls were not admitted to universities in Germany, so there were no college-preparatory schools for them. When Emmy completed her instruction around age 15, she entered a teacher training program with the idea of teaching French and English. She did very well, except in her practical teaching skills.

Emmy was very likeable and easy to get along with. She was interested in mathematics, showed a definite aptitude for it, and was certainly exposed to it. Her father was supportive and spent time with her teaching her mathematics even though it wasn’t part of her course of instruction.

So why the teacher training? As a child Emmy was clever, friendly, and sociable, but she was also considered plain and ordinary. She spoke with a slight lisp, was near-sighted, and later in life would be described as loud and “heavy of build.” Emmy said herself that she didn’t have the patience to be a wife or mother, and she seemed to have little interest in clothes. Her mother may have expected Emmy to have to support herself, so she encouraged the teaching career.

Emmy passed her examinations to teach, but when she finished her course of instruction some of the university rules were being relaxed and she decided she wanted to study mathematics. Women still couldn’t officially enroll, but they could audit with the permission of the professor, so with the support of her father and mathematician Paul Gordan, she took classes over the next two years and prepared to take the university entrance exams. In 1903, she passed these exams and even though she still couldn’t officially enroll, she went to Göttingen to study mathematics.

Emmy only spent one semester at Göttingen and returned home, possibly due to illness. During this time, the University at Erlangen had decided to admit women and Emmy officially enrolled as a student. Working closely with Paul Gordan, she completed her dissertation and in 1907 at the age of 25 was awarded highest honors. Over the next seven years, she worked at the university, writing papers, speaking abroad, and filling in for her father as his health declined, all without pay. The money wasn’t important to Emmy as long as she could do mathematics.

Emmy’s dissertation and Gordan’s style of work was very dense, full of many equations and calculations. Although, Emmy thought very highly of Gordan, she was not entirely happy with this approach, and she began to apply David Hilbert’s abstract approach to algebra. She had written some very important papers already in her career, but this is where she would make her greatest contribution.

In 1915, with the help of her father, she arranged to go back to Göttingen to study with Felix Klein and David Hilbert. It wasn’t long before Klein and Hilbert both felt that Emmy deserved a teaching position. They met with a lot of resistance. It wasn’t until 1919 that she was allowed to teach classes on her own, but it had to be as Hilbert’s assistant. The classes would be registered under Hilbert’s name, but Emmy would be the professor, and she still wouldn’t be paid. Fortunately, her mother’s brothers had set up a small trust fund for her, so she had some income. By 1923, she had gained more recognition and was granted a position with a small stipend.

Emmy had a unique teaching style. She had little patience with presenting established concepts, rather she would often work out her own research with the class. Needless to say many weren’t able to follow her, but the students who stuck with her were very loyal and were sometimes referred to as “Noether’s boys.” They would come to her house to discuss math and even when school was officially out, she would meet them at a local café for discussions. Gordan had often continued teaching during what he called “math walks” and Emmy adopted this style as well. One of her students from her time at Byrn Mawr in the 1930s said that they had to watch to keep her out of the streets or from running into things, because she would get so involved in talking about math. She had an enthusiastic style, often ending up disheveled by the end of class with her hair coming out of its pins.
Throughout the 1920s, Emmy established herself as one of the leading mathematicians in the new field of abstract algebra. At the same time, she contributed greatly to the work of others. There seemed to be no jealousy or resentment in her at all.

In 1933, with Hitler’s rise to power, many Jews lost their positions at German universities. Emmy was one of the first six to be dismissed from Göttingen. Yet she continued to hold clandestine classes in her home for the students who would come. One of her favorite students Ernst Witt would come to her home in his Brownshirt uniform. As far as the university was concerned she had three strikes against her; she was a Jew, a liberal pacifist, and she was a woman. But for Emmy, it was all about the math, nothing else mattered. If someone wanted to learn or work with her she would do it.

After her dismissal from the university, her friends began to try to find her a position out of Germany. She initially wanted to go to Oxford, or Russia where her brother went, but finally ended up at Bryn Mawr in Pennsylvania in the United States. This also gave her the opportunity to lecture at the Institute for Advanced Study at Princeton as well where Einstein was working. At the age of 51, she had her first real salary as a professor of mathematics. Her time here was good, but it was short. In 1935, Emmy went into the hospital for surgery to remove an ovarian cyst. The surgery appeared to go well, but four days later, her fever spiked and she lost consciousness. Emmy Noether died on April 14, 1935.

Written by Susan Ozmore. This post is an edited version of a post which originally appeared on the wonderful Saints, Sisters and Sluts blog, you can read the full version here. @SaintSisterSlut

 

Find out more…

The Saints, Sisters & Sluts blog has a great list of ther famous female mathematicians & scientists which you can see here.

This short video explains Emmy’s theorem and gives information about her incredible life:

Advertisement

3 thoughts on “Emmy Noether – “The most important woman in the history of mathematics””

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.